were performed on a MicroVAX II computer using TEXSAN software package (Molecular Structure Corporation, 1985). Atomic coordinates and details of molecular geometry are given in Tables 1 and 2. Fig. 1 is a view of the molecule prepared using TEXSAN.*

Discussion. The Ni atom in this crystal has a distorted square-pyramidal coordination with four S atoms of the two diethyldithiophosphates in the square plane and one P atom of triphenylphosphine at the apex; the Ni atom is $0.549 \AA$ above the basal plane of the four S atoms. The lengths of the $\mathrm{Ni}-\mathrm{S}$ bonds are in the range 2.391 (2) to 2.436 (2) \AA, the chelate angles $\mathrm{S}-\mathrm{Ni}-\mathrm{S}$ are 82.06 (6) and 82.86 (6) ${ }^{\circ}$. The $\mathrm{Ni}-\mathrm{S}$ distances are intermediate between fourcoordinated Ni complexes (Lin et al., 1987; McConnell \& Kastalsky, 1967) and six-coordinated Ni complexes (You et al., 1986; Liu et al., 1987; Liu

[^0]et al., 1990; You et al., 1990; Ooi \& Fernando, 1967).

In the triphenylphosphine, the P atom is in the three phenyl ring planes; the deviations of C atoms in the same ring from the ring plane are less than $0.014 \AA$. The dihedral angles between the basal plane consisting of the four S atoms and each of the three phenyl rings are $129 \cdot 6,145 \cdot 2$ and $125 \cdot 7^{\circ}$, respectively.

References

Lin, C.-C., Liu, S.-X., Xu, Z., Lin, J.-H. \& You, X.-Z. (1987). J. Struct. Chem. 6, 186-188.
Liu, S.-X., Lin, C.-C., Xu, Z., Lin, J.-H., Yu, Y.-P. \& You, X.-Z. (1990). To be published in Chem. J. Chin. Univ.

Liu, S.-X., Lin, C.-C., Xu, Z., Yu, Y.-P. \& You, X.-Z. (1987). Chin. J. Org. Chem. pp. 369-373.
Livingitione, S.E. \& Mihkelson, A. E. (1970). Inorg. Chem. 9, 2545-2551.
McConnell, J. E. \& Kastalsky, V. (1967). Acta Cryst. 22, 853-859.
Molecular Structure Corporation, (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX77381, USA.
Ooi, S. \& Fernando, Q. (1967). Inorg. Chem. 6, 1558-1562.
You, X.-Z., Xu, Z., Xu, X., Lin, J.-H., Yu, Y.-P., Lin, C.-C. \& Liu, S.-X. (1990). Kexue Tongba. To be published.
You, X.-Z., Xu, Z., Yu, Y.-P., Liu, S.-X. \& Lin, C.-C. (1986). J. Struct. Chem. 5, 154-158.

Acta Cryst. (1991). C47, 45-48

Structures of cis- and trans-Dichlorodioxobis(triphenylphosphine oxide)uranium(VI)

By S. B. Akona, J. Fawcett, J. H. Holloway and D. R. Russell Chemistry Department, The University, Leicester LE1 7RH, England
and I. Leban
Department of Chemistry \& Chemical Technology, E. Kardelj University, 61001 Ljubljana, Yugoslavia

(Received 9 February 1990; accepted 20 June 1990)

Abstract. cis-[$\left.\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{tppo})_{2}\right],\left[\mathrm{UCl}_{2} \mathrm{O}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OP}\right)_{2}\right]$, (1), $M_{r}=897 \cdot 52$, monoclinic, $C 2 / c, a=17.233$ (3), b $=12 \cdot 112$ (2), $c=17.085$ (4) $\AA, \beta=105.90$ (2) ${ }^{\circ}, V=$ $3429.7 \AA^{3}, Z=4, D_{x}=1.737 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \lambda=$ $0.71073 \AA, \quad \mu=47.64 \mathrm{~cm}^{-1}, \quad F(000)=1736, \quad T=$ $293 \mathrm{~K}, R=0.040$ for 2855 observed reflections with $I>3 \sigma(I) . \quad$ trans- $\left.\left[\mathrm{UO}_{2} \mathrm{Cl}_{2} \text { (tppo) }\right)_{2}\right], \quad\left[\mathrm{UCl}_{2} \mathrm{O}_{2}-\right.$ $\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{OP}\right)_{2}$], (2), $M_{r}=897 \cdot 52$, monoclinic, $B 2_{1}, a=$ $10 \cdot 158$ (11), $b=18 \cdot 849$ (17), $c=19 \cdot 139$ (14) $\AA, \beta=$ $90.4(1)^{\circ}, V=3664.4 \AA^{3}, Z=4, D_{x}=1.638 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \lambda=0.71073 \AA, \mu=44.74 \mathrm{~cm}^{-1}, F(000)=$ 1736, $T=293 \mathrm{~K}, R=0.042$ for 2603 observed
reflections with $I>3 \sigma(I)$. In both forms the complex has a distorted octahedral arrangement about the U atom.

Introduction. The uranium(VI) compounds $\left[\mathrm{UO}_{2} X_{2}-\right.$ $\left.\left(\mathrm{OPR}_{3}\right)_{2}\right]$ ($X=\mathrm{Cl}$ or $\mathrm{Br} ; R=\mathrm{Me}, \mathrm{Et}$ or Ph) have been reported (Gans \& Smith, 1964) and further studies have included the iodo compound ($X=\mathrm{I}$) (Day \& Venanzi, 1966). The compounds were expected to show a near linear arrangement of the uranyl ($\mathrm{O}-\mathrm{U}-\mathrm{O}$) bonds with the remaining atoms or ligands in the equatorial plane. This allows for cis or
© 1991 International Union of Crystallography

Table 1. Data collection and structure refinement parameters

	cis	trans
Crystal size (mm)	$0.09 \times 0.12 \times 0.16$	$0.06 \times 0.38 \times 0.42$
Diffractometer used	CAD-4, Enraf-Nonius	Stoe STADI-2
No. and θ range (${ }^{\circ}$) of reflections for lattice parameters	25; 8-9	141; 3-5-15
Scan type	$\omega-2 \theta$	ω
Scan angle	$0.8+0.3 \tan \theta$	$1.2+0.7 \sin \mu / \tan$ (UPS)
Monochromator	Graphit	
Range for data collection $\theta\left({ }^{\circ}\right)$	3•5/27	
h	-21/21	-24/24*
k	0/15	-12/12
l a	0/21	0/21
Max scan time (s)	30	48
Background	0.25 of scan time scan lim	at each of is
Scan rate (${ }^{\circ} \mathrm{min}^{-1}$)	2.75-5.49	1.5-12.3
Reference reflections	3 every 2 h	every 50 reflections
Orientation refiections	3 every 600	-
Intensity decrease (\%)	2.8	-
Measured reflections	7865	7126
Averaged reflections	3680	3353
Observed reflections $I>3 \sigma(I)$	2855	2603
Programs used	SHELX $76 \dagger$, GX \ddagger	SHELX $76 \dagger$, SHELXS§
Scattering factors ๆ	Neutral at	oms
R,** w R	$0.040,0.049$	0.042, 0.039
Weighting parameter (g) $\dagger \dagger$	0.0036	0.006
No. of parameters	169	333
Ratio of observed to parameters	16.9	7.8
Max. shift/e.s.d.	0.18	0.46
Residual electron density (e \AA^{-3})	$\begin{aligned} & -2.76 \text { to } 3.95 \\ & 0.93 \AA \text { from } U \end{aligned}$	$\begin{array}{r} -1.15 \text { to } 1.72 \\ 1.0 \AA \text { from } \mathrm{U} \end{array}$

* Referred to the unit cell used for data collection.
\dagger Sheldrick (1976).
\ddagger Mallinson \& Muir (1985).
§ Sheldrick (1986).
TInternational Tables for X-ray Crystallography (1974, Vol. IV, p. 99).
** The quantity minimized in the least-squares procedure is $R=\sum| | F_{o} \mid-$
$\left|F_{c}\right| / \sum\left|F_{o}\right| ; w R=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w\left(F_{o}\right)^{2}\right]^{1 / 2}$.
$\dagger \dagger$ Weighting $w=1 /\left[\sigma^{2}(\mathrm{~F})+\mathrm{g}(\mathrm{F})^{2}\right]$.
trans arrangement of the phosphine oxide ligands. An earlier structural study of the title compound (Bombieri, Forsellini, Day \& Azeez, 1978) revealed a trans form of the compound in a triclinic space group [now designated α-trans $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\text { tppo })_{2}$], and the authors anticipated the existence of the cis$\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{tppo})_{2}$. We report in this paper the crystal structures of the anticipated cis form and a new trans form in a monoclinic space group, in which the molecular units are in an alternative packing arrangement. The latter is designated β-trans $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\text { tppo })_{2}$.

Experimental. The crystals of cis- and trans$\mathrm{UO}_{2} \mathrm{Cl}_{2}(\text { tppo })_{2}$ were isolated separately as byproducts from the reactions of $\mathrm{Me}_{3} \mathrm{SiCl}$ with the products from the interaction of UF_{5} with tppo in acetonitrile. Pale-green irregular crystals of the cis form were isolated from an $\mathrm{Me}_{3} \mathrm{SiCl} / \mathrm{UF}_{5} /$ tppo (5:1:2), acetonitrile solution after standing in a glass

Table 2. The final atom coordinates and isotropic thermal parameters

		y	z	$U\left(\AA^{2}\right)$
cis- $\mathrm{UO}_{2} \mathrm{Cl}_{2} \mathrm{ZTTPO}$				
U	0.50000	0.33654 (3)	0.25000	0.028
P	$0 \cdot 34936$ (9)	0.56053 (13)	0.21415 (9)	0.030
Cl	0.39426 (13)	$0 \cdot 18939$ (15)	$0 \cdot 17087$ (14)	0.058
0	$0 \cdot 4592$ (3)	0.3386 (4)	0.3345 (3)	0.032
Op	0.40974 (24)	0.4793 (3)	$0 \cdot 19598$ (24)	0.047
C(1)	$0 \cdot 24883$ (19)	0.5173 (3)	0.16478 (25)	0.033
C(2)	0.18323 (19)	0.5856 (3)	$0 \cdot 16316$ (25)	0.044
C(3)	0.10526 (19)	0.5516 (3)	0.12249 (25)	0.054
C(4)	0.09287 (19)	$0 \cdot 4493$ (3)	0.08348 (25)	0.057
C(5)	0.15847 (19)	0.3811 (3)	0.08512 (25)	0.056
C(6)	0.23647 (19)	0.4150 (3)	0.12576 (25)	0.043
C(11)	0.36205 (29)	0.69323 (28)	0.17302 (25)	0.034
C(12)	0.35193 (29)	0.69831 (28)	0.08924 (25)	0.056
C(13)	0.36192 (29)	0.79844 (28)	0.05281 (25)	0.068
C(14)	0.38205 (29)	0.89346 (28)	$0 \cdot 10018$ (25)	0.059
C(15)	0.39217 (29)	0.88838 (28)	0.18395 (25)	0.062
C (16)	0.38217 (29)	0.78826 (28)	0.22037 (25)	0.051
C(21)	0.36109 (24)	0.5744 (4)	0.32083 (17)	0.034
C(22)	0.43680 (24)	0.6039 (4)	0.37069 (17)	0.042
C(23)	0.44899 (24)	0.6129 (4)	0.45461 (17)	0.046
C(24)	0.38551 (24)	0.5923 (4)	0.48865 (17)	0.052
C(25)	$0 \cdot 30981$ (24)	0.5628 (4)	0.43878 (17)	0.058
C(26)	0.29760 (24)	0.5539 (4)	0.35487 (17)	0.049
β-trans- $\mathrm{UO}_{2} \mathrm{Cl}_{2} \mathrm{ZTPPO}$				
U(1)	$0 \cdot 23198$ (5)	0.24902 (0)	0.38354 (2)	0.0358
$\mathrm{Cl}(1)$	$0 \cdot 1916$ (6)	$0 \cdot 2049$ (3)	0.25239 (24)	0.0705
$\mathrm{Cl}(2)$	$0 \cdot 2826$ (5)	0.2859 (4)	0.51504 (24)	0.0847
$\mathrm{O}(1)$	0.3625 (12)	$0 \cdot 3021$ (7)	0.3549 (6)	0.0608
$\mathrm{O}(2)$	0.0986 (12)	$0 \cdot 1957$ (7)	0.4104 (7)	0.0539
$\mathrm{P}(1)$	-0.0467 (4)	0.37781 (24)	0.38371 (20)	0.0414
$\mathrm{O}(3)$	0.0886 (12)	0.3434 (6)	0.3732 (5)	0.0467
C(1)	-0.1420 (11)	0.3356 (7)	0.4505 (5)	0.0504
C(2)	-0.0839 (11)	0.3230 (7)	0.5156 (5)	0.0604
C(3)	-0.1569 (11)	$0 \cdot 2916$ (7)	0.5687 (5)	0.0742
$\mathrm{C}(4)$	-0.2880 (11)	$0 \cdot 2728$ (7)	0.5567 (5)	0.0892
C(5)	-0.3461 (11)	$0 \cdot 2855$ (7)	0.4916 (5)	0.0980
C(6)	-0.2730 (11)	$0 \cdot 3169$ (7)	0.4386 (5)	0.0954
$\mathrm{C}(11)$	-0.0252 (12)	$0 \cdot 4692$ (5)	0.4089 (6)	0.0429
C(12)	-0.1212 (12)	0.5056 (5)	0.4465 (6)	0.0594
C(13)	-0.1053 (12)	0.5776 (5)	0.4609 (6)	0.0918
C(14)	0.0066 (12)	0.6133 (5)	0.4379 (6)	0.0813
C(15)	$0 \cdot 1026$ (12)	0.5768 (5)	0.4004 (6)	0.0903
C(16)	0.0866 (12)	0.5049 (5)	0.3859 (6)	0.0741
C(21)	-0.1409 (13)	0.3766 (7)	0.3047 (5)	0.0450
C(22)	-0.2174 (13)	0.4342 (7)	0.2832 (5)	0.0631
C(23)	-0.2841 (13)	$0 \cdot 4319$ (7)	0.2193 (5)	0.0755
C(24)	-0.2742 (13)	0.3720 (7)	0.1768 (5)	0.0915
C(25)	-0.1976 (13)	0.3145 (7)	0.1982 (5)	0.1045
C(26)	-0.1309 (13)	0.3168 (7)	0.2622 (5)	0.0841
$\mathrm{P}(2)$	0.4429 (4)	0.08413 (25)	0.40170 (23)	0.0412
$\mathrm{O}(4)$	$0 \cdot 3717$ (12)	0.1524 (7)	0.4036 (6)	0.0553
C(31)	0.5997 (11)	0.0970 (8)	0.3593 (6)	0.0511
C(32)	0.7190 (11)	0.0988 (8)	0.3959 (6)	0.0832
C(33)	0.8355 (11)	0.1138 (8)	0.3609 (6)	0.1063
C(34)	0.8329 (11)	0.1273 (8)	0.2892 (6)	0.1337
C(35)	0.7137 (11)	$0 \cdot 1257$ (8)	0.2526 (6)	0.1126
C(36)	0.5971 (11)	$0 \cdot 1107$ (8)	0.2876 (6)	0.0792
C(41)	$0 \cdot 3502$ (11)	0.0179 (6)	0.3571 (6)	0.0453
C(42)	0.4079 (11)	-0.0410 (6)	0.3256 (6)	0.0782
C(43)	$0 \cdot 3290$ (11)	-0.0929 (6)	0.2945 (6)	0.0867
C(44)	$0 \cdot 1923$ (11)	-0.0858 (6)	0.2948 (6)	$0 \cdot 1018$
C(45)	$0 \cdot 1345$ (11)	-0.0269 (6)	0.3263 (6)	0.0875
C(46)	0.2135 (11)	0.0250 (6)	0.3575 (6)	0.0550
C(51)	0.4775 (17)	0.0553 (6)	0.4890 (5)	0.0561
C(52)	0.4758 (17)	$0 \cdot 1061$ (6)	0.5420 (5)	0.0657
C(53)	0.5052 (17)	0.0865 (6)	0.6107 (5)	0.0978
C(54)	0.5363 (17)	0.0161 (6)	0.6263 (5)	0.1234
C(55)	0.5380 (17)	-0.0346 (6)	0.5733 (5)	$0 \cdot 1214$
C(56)	$0 \cdot 5086$ (17)	-0.0151 (6)	0.5046 (5)	0.0850

Equivalent isotropic temperature factor U defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

Table 3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ of the cis form, the α - and β-trans forms and database values (Cambridge Structural Database)

			α-trans		Database	
	cis form	β-trans form	form	Obs	Av	
	$2.641(2)$	$2.673(4), 2.657(4)$	$2.645(5)$	158	$2.63(5)$	
$\mathrm{U}-\mathrm{Cl}$	$1.771(4)$	$1.753(12), 1.767(12)$	$1.764(9)$	285	$1.76(3)$	
$\mathrm{U}=\mathrm{O}$	$2.340(4)$	$2.306(12), 2.339(12)$	$2.300(8)$	8	$2.30(6)$	
$\mathrm{U}-\mathrm{O}(\mathrm{P})$	$1.524(4)$	$1.535(3), 1.477(12)$	$1.518(8)$	8	$1.51(2)$	
$\mathrm{P}-\mathrm{O}(\mathrm{P})$						
$\mathrm{U}-\mathrm{O}-\mathrm{P}$	$144.5(2)$	$151.7(8), 166.2(8)$				
$\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$	$95.1(1)$	$176.3(2)$				
$\mathrm{O}=\mathrm{U}=\mathrm{O}$	$178.4(2)$	$178.6(6)$				
$(\mathrm{P}) \mathrm{O}-\mathrm{U}-\mathrm{O}(\mathrm{P})$	$84.7(1)$	$175.3(4)$				

apparatus for several weeks. The pale green rhomboid crystals of the trans form were produced in a similar manner from an $\mathrm{Me}_{3} \mathrm{SiCl} / \mathrm{UF}_{5} /$ tppo (2:1:2) solution. The crystals for structure determination were sealed in preseasoned (F_{2}) Pyrex glass capillaries.

The unit-cell parameters of the cis form were determined by a least-squares fit of setting angles of 25 reflections. The intensity data for the β-trans form were collected from a crystal mounted about the b axis. Four quadrants of data were collected as preliminary photographs did not conclusively support monoclinic symmetry. The cell parameters of the β-trans form were determined from the optimized counter angles for zero and upper layer reflections. The standard $P 2_{1}$ setting was rejected in favour of the nearly orthogonal $B 2_{1}$ cell. The merge of 7126 reflections to 3353 unique reflections after absorption correction gave $R_{\text {int }}$ of 0.0271 , which was taken as conclusive support of the monoclinic symmetry.

For both structures the position of the uranium atom was located by Patterson methods and the remaining atoms were located by Fourier techniques. Details of the procedures used for data collection and refinement are given in Table 1. H atoms were included in calculated positions ($\mathrm{C}-\mathrm{H}=1.08 \AA$) for the final cycles of refinement, with a common fixed isotropic thermal parameter. An absorption correction was applied to the data set for the trans form with the maximum and minimum transmission factors 0.764 and 0.274 respectively.

Discussion. Table 2 lists the final positional and isotropic thermal parameters for the cis and β-trans forms of $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{tppo})_{2}$. ${ }^{*}$ Table 3 gives selected comparative bond distances and angles. Both structures show that the U atom is surrounded by two uranyl O atoms, two Cl atoms and two O atoms of the tppo

[^1]groups. Figs. 1 and 2 show the approximately octahedral arrangement about the U atoms of the cisand β-trans $-\mathrm{UO}_{2} \mathrm{Cl}_{2}$ (tppo) $)_{2}$ molecules respectively. In both, the uranyl O atoms form an almost linear group with an $\mathrm{O}=\mathrm{U}=\mathrm{O}$ angle of 178.4 for the cis form and 178.6° for the trans form. As would be expected, the distortion from octahedral symmetry of the equatorial atoms is greater in the asymmetric cis form with the Cl atoms repelling each other and giving a $\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$ angle of $95 \cdot 1$ and a $(\mathrm{P}) \mathrm{O}-\mathrm{U}-$ $\mathrm{O}(\mathrm{P})$ angle of $84 \cdot 7^{\circ}$, the mean deviation from octahedral for all angles is $3 \cdot 4^{\circ}$. The angles about the U atom in the β-trans structure show a maximum deviation from octahedral with a $\mathrm{O}(3)-\mathrm{U}-\mathrm{Cl}(1)$ angle of 93.9° (mean deviation 1.7°).

The arrangement of the β-trans form found in the monoclinic space group is a less closely packed structure than the α-trans $-\mathrm{UO}_{2} \mathrm{Cl}_{2}$ (tppo) ${ }_{2}$ (Bombieri, Forsellini, Day \& Azeez, 1978) with the respective unit-cell volumes per molecule of 908 and $872 \AA^{3}$. The packing of the molecules is such that the P atoms in the β-trans $-\mathrm{UO}_{2} \mathrm{Cl}(\text { tppo })_{2}$ are on the same side of the plane containing the Cl and the O atoms of the tppo groups whilst in the α-trans$\mathrm{UO}_{2} \mathrm{Cl}_{2}$ (tppo) $)_{2}$ structure the P atoms are on the opposite sides of the plane (Fig. 3).

Fig. 1. ORTEPII (Johnson, 1976) view of the $c i s-\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{tppo})_{2}$ molecule.

Fig. 2. View of the β-trans- $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{tppo})_{2}$ molecule.

Fig. 3. Projections of (a) the α-trans- $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\text { tppo })_{2}$ form and (b) the β-trans $-\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{tppo})_{2}$ form along the $\mathrm{Cl}-\mathrm{U}-\mathrm{Cl}$ bonds.

Selected bond lengths and angles (Table 3) show that the distances about the U atom are equivalent within e.s.d.'s for the cis and β-trans structures. The distances are also in agreement with the α-trans structure (Bombieri, Forsellini, Day \& Azeez, 1978) and a search of the Cambridge Structural Database (Table 3).

The angle at the bridging O atom of the triphenyl phosphine oxide ligand is found to be lowest for the cis form, $144 \cdot 5^{\circ}$, compared with values from 154 to 167° observed in the data search and is probably due to steric hindrance between the adjacent bulky ligands. The values observed in the β-trans structure of 151.7 and $166 \cdot 2^{\circ}$ are assumed to be different only because of packing constraints.

In the paper by Bombieri et al. (1978) on the α-trans $-\mathrm{UO}_{2} \mathrm{Cl}_{2}$ (tppo) ${ }_{2}$ structure the probability of the cis form being determined was anticipated. The determination of the new β-trans- $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{tppo})_{2}$ structure suggests that there may be more structure forms dependent only upon conditions of crystallization.

References

Bombieri, G., Forsellini, E., Day, J. P. \& Azeez, W. I. (1978). J. Chem. Soc. Dallon Trans. pp. 677-680.
Cambridge Structural Database (1988). Univ. Chemical Laboratory, Lensfield Road, Cambridge, England.
Day, J. P. \& Venanzi, L. M. (1966). J. Chem. Soc. A, pp. 1363-1367.
Gans, P. \& Smith, B. C. (1964). J. Chem. Soc. pp. 4172-4176.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Mallinson, P. R. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for solution of crystal structures. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1991). C47, 48-51

Structure of Tetraphenylarsonium Bis(1,2-dithiooxalato-S,S')palladate(II)

By Pascual Román,* Juan M. Gutiérrez-Zorrilla, Antonio Luque, Javier I. Beitia and Carmen Guzmán-Miralles
Departamento de Quimica Inorgánica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Spain
and Martín Martínez-Ripoll
UEI Cristalografía, CSIC, Serrano 113, 28006 Madrid, Spain

(Received 12 March 1990; accepted 20 June 1990)

```
Abstract. \(\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\right)_{2}\right], \quad M_{r}=1113 \cdot 37\), triclinic, \(\quad P \overline{1}, \quad a=11 \cdot 101\) (7) \(, \quad b=13 \cdot 316(5), \quad c=\) 18.485 (8) \(\AA, \quad \alpha=110.90\) (5),\(\quad \beta=77.74\) (8), \(\quad \gamma=\) 106.28 ( 8\()^{\circ}, V=2431(2) \AA^{3}, Z=2, D_{m}=1.53\) (1), \(D_{x}=1.52 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71069 \AA, \quad \mu=\)
* To whom correspondence should be addressed.
```

0108-2701/91/010048-04\$03.00
$19.317 \mathrm{~cm}^{-1}, T=296 \mathrm{~K}, \quad F(000)=1120, R=0.041$, $w R=0.045$ for 5034 observed reflections with $I>$ $3 \sigma(I)$. The asymmetric unit of the title compound contains one discrete complex $\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{O}_{2}\right)_{2}\right]^{2-}$ anion and two $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]^{+}$cations linked through electrostatic interactions and hydrogen contacts of type C-H \cdots.

[^2]
[^0]: * Lists of structure factors, anisotropic thermal parameters, full bond distances and angles not including H atoms, least-squares planes, and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52970 (41 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53319 (31 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: (c) 1991 International Union of Crystallography

